Corrosion at Sea

Dangle Academy • 6 April 2023
RRS Sir David Attenborough at sea


Corrosion at Sea

Corrosion can be a major issue for any industry that works with metal, including the shipping industry. The harsh marine climate, with its high salt and moisture levels, makes the ships prone to corrosion. If left unattended, it can weaken the ship’s construction, raising safety issues and requiring expensive repairs.


Corrosion is a process that occurs with metals, involving them moving towards their lowest energy state, which results in a quick reaction between the environment and the metal, hence degrading its quality and life. Corrosion is derived from the Latin word ‘corrodere’, which means ‘gnaw to pieces’.


In case of the marine or shipping sector, mild steel is the most preferred metal for constructing ships due to its low cost, mechanical strength and ease of fabrication. However, its main issue is that it corrodes quite easily as it comes in contact with the salty water of the sea. Secondly, if it is not properly protected, it loses its strength quite fast, which could lead to structural failure.

While a way to prevent this is to repair the coating while the vessel is offshore, it can cost up to 100 times the cost of the first coating, and according to NACE International, the total cost of corrosion in the marine sector across the world is somewhere between 50 to 80 billion dollars annually.


However, if shipowners start with adequate planning and are careful with the first coating, their ships will give the best performance and maintain cost efficiency.


If the reason for the deterioration is poor preparation of the surface, then the solution is to remove the paint and do it again.

There are two kinds of corrosion which are relevant to the shipping industry, which is pitting corrosion and corrosion by bacteria or bacterial corrosion. 


Therefore, shipbuilders and operators take many steps to protect their vessels from corroding. This article will discuss some standard methods used to shield ships from corrosion.


Here are the most common ways to prepare a ship to fight corrosion:


Ship Design

Ship designers and operators put in the effort to reduce corrosion to expand the lifespan of ships and keep them secure. A few design features can help reduce the rate of corrosion and reduce maintenance costs during the ship’s active life.


  • Properly placing scuppers and drains is essential to aiding the draining of water from decks, wells, and bilge areas, eliminating a direct cause of corrosive activity.
  • To reduce galvanic corrosion, insulation should be set up in areas where different metals are placed close to each other. An impressed current system that monitors corrosive cell activity and applies a current to protective anodes can also be installed to detect and manage corrosion.
  • In locations with temperature shifts, insulation is needed to stop thermal fatigue.
  • Anti-vibration practices, such as fitting turbine machinery with sliding feet, can minimise metal fatigue, and sacrificial anodes made of magnesium, aluminium, or zinc can protect against corrosion.
  • Utilising corrosion-resistant alloy steel or stainless steel can also decrease corrosion. Installing rubbing strakes or doubling plates to take in extra wear and tear can also help extend a ship’s service life.
  • Structural user-friendly design to allow maintenance and coating applications can also make it easier to control corrosion once a vessel is in operation.


Incorporating these design features at the building stage can significantly reduce maintenance costs and control corrosion.



Coating Application

One of the most effective ways to protect ships from corrosion is by applying coatings to the ship’s surfaces. These specialised paint coatings are a barrier between the metal surface and the corrosive environment. As the ship hull and open deck are in constant contact with water and the sea atmosphere, this additional layer of protection prevents moisture and salt from coming into contact with the metal surface and reduces the likelihood of corrosion.


Hull paint coatings also prevent sealife, such as algae and molluscs getting attached to the hull which may expose the metal to the seawater and increase the corrosion rate. They also provide a smooth hull surface to reduce the drag and resistance over the hull, thereby increasing fuel efficiency.


The most common types of coatings include epoxy, polyurethane, and zinc-rich coatings. Epoxy coatings are popular because they are highly resistant to water and chemicals and provide excellent adhesion to metal surfaces.

Polyurethane coatings are also commonly used because they provide a tough, durable finish that can withstand harsh conditions. Zinc-rich coatings are particularly effective because they contain a high percentage of zinc, which acts as a sacrificial anode to protect the metal surface from corrosion.


Cathodic Protection

Cathodic protection is a method that involves the use of sacrificial anodes. As the name suggests, sacrificial anodes are made from metals that are more anodic than the metal being protected. They get corroded (or sacrificed) instead of the ship’s metal, thereby saving the metal from corrosion.


Galvanic cathodic protection involves the use of sacrificial anodes that are connected to the metal being protected. When the anodes corrode, they release electrons, which flow to the metal and prevent corrosion.


Impressed current cathodic protection, on the other hand, involves using an external power source to provide the electrons needed to protect the metal surface. Both types of cathodic protection are effective in protecting ships from corrosion. Impressed current cathodic protection is generally preferred for covering larger surface areas, and it can be precisely adjusted to meet the ship’s specific needs.


Sacrificial anodes are used in smaller areas or in the machinery which carries or uses seawater.



Corrosion inhibitors

These are the chemical compound applied on the surface of the metal. This is not a preventive method, but corrosion inhibitors reduce the corrosion rate on materials such as metal or alloy. It is a cost-effective way to prevent or control corrosion because using corrosion inhibitors can save up to 35% of losses due to pollution on ships.


The major advantage of corrosion inhibitors is using cheaper metals other than steel and alloy in a harsh environment. Once applied with corrosion inhibitor chemicals, they can operate longer than their prescribed age. It also reduces maintenance costs as it provides elongating rust protection.


Anodic Protection

This is another method used for corrosion prevention; however, they are not commonly used in the shipping industry as they require a constant source of electricity, which can be challenging to maintain in case of a blackout.


Thus, there are many ways to prevent shipping vessel corrosion, such as cathodic protection, which has two methods, including the use of sacrificial anodes and impressed current systems and secondly, applying industrial coatings on the ship’s surface, especially areas more exposed to the seawater with dissolved salts like the hull. Routine maintenance goes a long way in maintaining the long life of the asset.



Why Choose Dangle's Academy


Here at Dangle, we pride ourselves on offering a wide range of professional and comprehensive inspection, access, coatings, and composite (IACC) industrial services and training courses to cater to the needs of both the private and public sectors. Our dedication to providing high-quality work at height solutions and training has helped us establish a strong reputation in the industry.


With a team of highly skilled and experienced professionals, we are committed to delivering exceptional results that not only meet but exceed our clients' expectations. Our on-site working at height services are designed to minimise maintenance costs in the long and short-term, allowing our clients to save on valuable resources.


Located in Belfast, Northern Ireland, our headquarters serve as the centre of our operations across Ireland. However, we also have a Dangle office based in Scotland, ensuring that we can extend our services to a wider clientele across the United Kingdom. No matter where you are located, our team is always ready to assist you with your industrial maintenance or training needs.


If you would like to learn more about how our dedicated team can help you, we encourage you to get in touch with us today. Our friendly and professional staff are always available to provide you with the information and support you require.


Contact us now to discover the Dangle difference and let us be your trusted partner in meeting your industrial service and training needs today.


We'd Love a Share...

You might also like

A man in a hard hat is sitting in a confined space hole with a ladder.
by Dangle Academy 18 April 2025
Why More Companies Are Choosing Rope Access for Confined Space Work In today’s industrial landscape, confined space work remains one of the most challenging and high-risk tasks for companies across a wide range of sectors. Whether it’s cleaning inside storage tanks, inspecting silos, or conducting maintenance in utility tunnels or petrochemical plants, the complexity, danger, and logistical hurdles of confined space operations demand nothing short of excellence in planning, access, and execution. Traditionally, this type of work required extensive scaffolding, large teams, and lengthy setup times — often resulting in increased cost, risk, and downtime. But that’s changing. More companies across Ireland and the UK are turning to Dangle and rope access in confined spaces as a faster, safer, and more cost-effective solution for confined space work . In this article, we’ll explore why rope access is becoming the go-to method for confined space work , and how it enhances safety and efficiency. What is Confined Space Work? A confined space is defined as any fully or partially enclosed space that: Is not designed for continuous occupancy Has limited entry and exit points (usually only one) May pose health and safety risks such as lack of oxygen, toxic gases, or physical hazards Examples include: Storage tanks Boilers Silos Incinerators Underground vaults Utility shafts Vessels Sewers and pipelines Confined space work involves entering these environments to carry out inspections, repairs, cleaning, welding, painting, or maintenance. Given the physical restrictions and potential hazards, it’s classified as high-risk confined space work and must comply with stringent safety regulations in Ireland, the UK and across the EU. Rope access is proving to be a transformative approach in the realm of confined space work . This innovative method is rapidly gaining traction among companies seeking to overcome the traditional challenges associated with confined space operations. The appeal lies in its ability to deliver enhanced safety, efficiency, and cost-effectiveness. The Traditional Challenges of Confined Space Work Performing confined space work presents several operational and safety challenges for asset owners: Limited mobility and access Poor ventilation and oxygen-deficient atmospheres Risk of toxic exposure or flammable gases Difficulties in rescue operations Cumbersome entry methods using scaffolding or mobile platforms These factors not only increase risk but also drive up operational costs and project timelines. In many cases, companies must halt or limit production during confined space entry, resulting in revenue losses. Rope Access: A Modern Solution for Confined Space Challenges Rope access is revolutionising the way companies approach confined space work . Instead of relying on large, immobile access structures, technicians use ropes, harnesses, lanyards and fall-arrest systems to safely enter and operate within tight spaces. The method is rooted in climbing and caving techniques but has evolved into a globally recognised safe system of confined space working developed by organisations such as IRATA ( Industrial Rope Access Trade Association ) . How Rope Access Works in Confined Spaces Rope access in confined space work typically involves: Pre-entry permit to work, risk assessment and atmospheric testing like gas testing Installation of rope access and retrieval systems Certified technicians using two-rope systems (working line + backup line) Continuous monitoring and standby rescue teams Use of communication systems, gas monitors, and RPE and PPE This method allows highly skilled rope access technicians to carry out precise work in confined environments with greater mobility, speed, and control. Why Companies Are Switching to Rope Access for Confined Space Work Unmatched Safety Standards Safety is paramount in confined space work . With rope access, the entire operation is built around redundant systems and rigorous safety protocols. • Dual-rope system provides fall protection and redundancy • Certified technicians undergo regular training and assessments • Pre-installed rescue systems allow for immediate extraction • Gas detection and atmospheric monitoring are continuous According to industry data, rope access has one of the lowest incident rates in the industrial sector — a testament to its controlled, methodical approach. Rapid Deployment and Project Turnaround Rope access technicians can mobilise quickly, often completing setup within hours instead of days. There’s no need for large scaffolding crews or heavy equipment. • Faster setup and teardown • Minimal interruption to plant operations • Jobs completed in a fraction of traditional timelines This speed translates to reduced downtime, which is critical in sectors such as oil & gas, energy, pharmaceuticals, and utilities. Operational Cost-Effectiveness Rope access significantly reduces the overall cost of confined space work by: • Eliminating scaffolding and platform hire • Requiring smaller, more skilled teams • Reducing setup and access time • Minimising operational downtime For companies seeking efficient maintenance without breaking the budget, rope access offers an exceptional return on investment, contact Dangle for further advice or to receive a free no obligation quote for your next project. Versatility and Flexibility Rope access adapts to even the most complex and awkward confined space work — whether horizontal, vertical, or with irregular internal structures. From underground tanks to vertical silos, rope technicians can position themselves exactly where needed using only their skills, minimal tooling and equipment. • Navigate complex internal geometries • Perform precision tasks (e.g., welding, NDT, inspection, painting, cleaning) • Easily integrated with confined space work and rescue protocols This flexibility allows rope access to support a diverse range of industries and maintenance tasks. Built-in Rescue Readiness One of the biggest concerns in confined space work is emergency rescue. Dangle's rope access teams are not only trained in confined space entry — they’re also certified in casualty rescue, with dedicated standby technicians on every job. At Dangle, all technicians are trained in: • Rope-based confined space rescue • Use of winch and tripod systems • CPR and first aid for high-risk environments This means your project doesn’t just meet legal safety obligations — it exceeds them. Sectors Benefiting from Rope Access in Confined Spaces Energy & Utilities • Inspections inside turbines, boilers, and tanks • Emergency repairs during shutdowns • Cleaning of heat exchangers Pharmaceutical & Food Processing • Internal cleaning and integrity checks of vessels • Maintenance in sterile, hard-to-access environments Manufacturing • Silo and hopper cleaning • Welding repairs and corrosion protection Water & Wastewater Treatment • Accessing underground chambers and tanks • Structural inspections and leak testing Oil & Gas / Petrochemical • Confined space NDT in hazardous atmospheres • Gas monitoring and ATEX-compliant work methods Rope Access in Ireland: Why It’s Gaining Momentum With a growing focus on safety, compliance, and environmental responsibility, companies are increasingly turning to Dangle's rope access for confined space work . Whether in the green energy sector, industrial hubs like Cork and Limerick, Dublin’s expanding infrastructure or Belfast’s shipbuilding and maintenance at Harland & Wolff , the need for efficient confined space access is rising — and rope access is leading the way. The method’s efficiency and safety benefits have led to its widespread acceptance in industries that demand stringent safety standards and quick turnaround times. Rope access allows these companies to conduct thorough maintenance and repair operations without extensive downtime, thereby boosting productivity and ensuring compliance with industry regulations. Future Trends: The Integration of Technology and Rope Access The future of confined space work lies at the intersection of rope access and smart technologies. At Dangle, we’re investing in tools such as: Wearable gas detectors Confined space entry monitoring systems Breathing apparatus Digital work logging Drone collaboration for external assessments Combining rope access with technology ensures your confined space projects are not only safe and compliant — but also future-ready . Why Choose Dangle’s Academy? Here at Dangle , we pride ourselves on offering a wide range of professional and comprehensive inspection , access , coatings , and composite (IACC) industrial services and training courses to cater to the needs of both the private and public sectors. Our dedication to providing high-quality work at height solutions and training has helped us establish a strong reputation in the industry. With a team of highly skilled and experienced professionals, we are committed to delivering exceptional results that not only meet but exceed our clients' expectations. Our on-site working at height services are designed to minimise maintenance costs in the long and short-term, allowing our clients to save on valuable resources. Located in Belfast, Northern Ireland, our headquarters serve as the centre of our operations across Ireland. However, we also have a Dangle office based in Scotland , ensuring that we can extend our services to a wider clientele across the United Kingdom. No matter where you are located, our team is always ready to assist you with your industrial maintenance or training needs. If you would like to learn more about how our dedicated team can help you, we encourage you to get in touch with us today. Our friendly and professional staff are always available to provide you with the information and support you require. Contact us now to discover the Dangle difference and let us be your trusted partner in meeting your industrial service and training needs today.
A group of people are climbing ropes in a building.
by Dangle Academy 7 April 2025
Essential Guide to Rope Access Training: Benefits, Techniques, and Certification for Safe and Effective Hight Work.
The sun is shining through the clouds on a bridge
by Dangle Academy 24 March 2025
Bridges are crucial for the UK’s transport and economy, but environmental factors, traffic, and aging require regular inspections and maintenance for safety.
More posts

Book a Service Today